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We discuss the possibility of making the initial definitions of mutually different (pos-
sibly interacting, or even entangled) systems in the context of decoherence theory.
We point out relativity of the concept of elementary physical system as well as point
out complementarity of the different possible divisions of a composite system into
“subsystems,” thus eventually sharpening the issue of “what is system.”
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1. INTRODUCTION

A physical system is described by its parameters (e.g., mass, electric charge
etc.) and by the degrees of freedom properly describing dynamics of the system.
In the classical world, this general scheme seems inevitable. Nevertheless, in the
quantum realm, the things may be different as we show within the context of the
“environment-induced superselection rules” (or decoherence) theory.

Actually, the task of dividing complex systems into subsystems is not in gen-
eral trivial. This fundamental yet a subtle task can be performed in some generality
on the basis of the decoherence theory, yet bearing certain open questions. E. g. a
composite system C may not be divisable in respect to the arbitrarily defined “de-
grees of freedom,” thus–relative to these degrees of freedom–being an elementary
physical system (likewise the elementary particles). On the other side, the possible
(meaningful) division of C into subsystems need not, in principle, be unique, thus
posing the question of physical reality of the “subsystems” emerging from the
different possible divisions of C. Bearing in mind that the real systems are usually
open systems, the task of defining “subsystem” coincides with the task of defining
“system.”
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The method employed here is elementary yet conceptually sufficient for
addressing the truly fundamental issue of “what is system” within the context of
quantum mechanics of open systems.

2. THE PROBLEM

Most of the “quantum paradoxes” start with the assumption of existence of
mutually separable physical systems. On the other side, quantum holism removes
most of the problems (except on the intuitive level) from the very beginning–being
a consequence of the fully consistent quantum mechanical formalism (e.g. of the
quantum entanglement). In the macroscopic domain, however, existence of the
well-defined, mutually separated systems is the very basis of the physical methods
and is actually taken for granted. Thus, in a sense, transferring the concept of the
different systems from the macroscopic, through the mesoscopic, to the purely
quantum-mechanical domain is at the heart of the problem of the “transition from
quantum to classical” (Giulini et al., 1986; Zurek, 1991, 1993). This is also a
problem of practical importance–since, it seems, that in the realistic situations,
we are able to distinguish between the different systems (e.g. between the object
of measurement and the measurement instrument).

The possibility of defining mutually independent (compatible) degrees of
freedom (and their conjugate momenta) and of performing independent (“local”)
measurements of the observables is a defining feature of the different physical
systems. The importance of the issue is rather apparent. E.g. according to Zurek
(1993): “. . . [quantum mechanical] problems . . . cannot be even posed when we
refuse to acknowledge the division of the Universe into separate entities,” while
“. . . without the assumption of a preexisting division of the Universe into individual
systems the requirement that they have a right to their own states cannot be even
formulated.” Of course, the rules for defining the preferred states (e.g. the “pointer
basis,” as well as the “pointer observable” (Zurek, 1991, 1993)) of an open system
comes from the foundations of the decoherence theory. On this basis appeared an
early draft (Dugić, 1999) of the problem considered here.

This issue should be distinguished from the problem of the loss of individ-
uality of mutually entangled systems. Actually, the entangled states refer to the,
initially, well-defined systems: the systems (actually subsystems) are usually as-
sumed already to be defined, as well as their state spaces, which is the basis for
defining the entangled states. So, in this perspective, the task of answering “what
is system” is a more fundamental task than investigation of entanglement itself.

Essentially the same problem has recently been addressed e.g. by Zanardi
et al. (2004) and by Barnum et al. (2003) (and the references therein), by con-
sidering the different possible operational uses of entanglement in the quantum
information issues. While bearing some similarity with our results, the results
presented therein are based on the different approaches that are briefly discussed
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in Section 6. Here, we employ the foundations of the decoherence theory and
particularly certain recent results in this regard (Dugić, 1996, 1999, 1997).

3. ON DECOHERENCE

Decoherence theory deals with the open quantum systems. It is therefore
natural to seek for an answer to the fundamental problem of “what is system”
within this theory. Here, we employ the foundations of the so-called “environment-
induced superselection rules” theory (Zurek, 1991, 1993), which provides a clear
conceptual framework for this purpose. To this end, a short survey of the theory
might be useful.

In general, by “decoherence” one may assume the different, sometimes even
mutually physically exclusive, processes. Here, we refer to the “environment-
induced decoherence” effect (Zurek, 1993) that can be defined as follows.

Definition 3.1. By decoherence, we assume the environment-induced, dynamical
appearance of the effective superselection rules for an open quantum system. Deco-
herence determines the so-called “pointer observable” that brings the classical-like
behaviour of the system. An orthonormalized basis, {|φn〉1}, that is an eigenba-
sis of the “pointer observable” (the “pointer basis”) bears robustness as formally
defined:

Ĥint |φn〉1|0〉2 = |φn〉1|χn〉2. (1)

In Eq. (1): the open system is the system 1 and the system 2 represents its
environment. More generally, the “pointer basis” may be substituted by a set of
the only-approximatelly-orthogonal states (a “preferred set of states”) for which
Eq. (1) is only approximately satisfied.

Equation (1) is substantial in the “macroscopic context” of the decoherence
theory (Zurek, 1991, 1993), i.e. for the issue of the “transition from quantum
to classical” (Giulini et al., 1986; Zurek, 1991, 1993). It is also of interest in the
quantum measurement theory. However, Eq. (1) does not appear substantial for the
microscopic systems, for which one expects to maintain their genuine, quantum
mechanical nature.

Openess of a system is the very origin of the occurrence of decoherence.
Actually, if the interaction in the system 1 + 2 may be reduced to the external
field e.g. for the system 1, then this system remains an isolated system described
by the Schrodinger equation, not yet being subject to the decoherence process.

In effect, decoherence determines the classical-like degrees of freedom (then
appearing as the “pointer observables”) of the open system, while the degrees
of freedom intact by the environment may maintain their genuine quantum-
mechanical character.
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Most of the operational tasks of the decoherence theory rely on investigation
of the characteristics of the interaction in the composite system 1 + 2–which is
the subject of the next section.

4. SEPARABILITY

As implicit in the above quotation of Zurek (cf. Section 2), the initial defini-
tions of the subsystems make sense if one can a posteriori justify these definitions
on the basis of the occurrence of decoherence. In other words: non-occurrence of
decoherence for a system gives rise to ill-defined system and–in a sense–challenges
the initial definition of the system. This is exactly the point which our analysis
starts from: what might be physically told about an ill-defined open system?

A detailed analysis (Dugić, 1996, 1997) of the occurrence of decoherence
points out the condition of separability (cf. Definition 4.1 below) of the interaction
term of the Hamiltonian as the (effective) necessary condition for the occurrence
of decoherence–cf. Appendix A. Investigating the occurrence of decoherence is
truly a subtle task (Dugić, 1996, 1997; Paz and Zurek, 1999). E.g., separability
of the complete Hamiltonian (of the composite system “system + environment”)
is sufficient in this regard (Dugić, 1996, 1997). Strong interaction allows the
occurrence of decoherence. generally, which still depends on a number of the
details in the model of the system (Dugić, 1996; Zurek, 1991, 1993). On the other
side, strong interaction is not necessary for the occurrence of decoherence (Paz
and Zurek, 1999). Nevertheless, the condition of separability of the interaction
Hamiltonian represents an (effective) necessary condition for the occurrence of
decoherence (Dugić, 1997)–cf. Appendix A for some details.

Now, the separability appears as a condition useful for defining the “dividing
line” between the subsystems. Formally, existence of the subsystems is presented
(cf. (4.1) below) by the tensor-product symbol, ⊗, while assuming the definitions
of the subsystems through their–implicitly present–degrees of freedom.

Definition 4.2. A bipartite (1 + 2) system’s observable Â12 is of the separable
kind, if its general form

Â12 =
∑

i

B̂1i ⊗ Ĉ2i , (2)

fulfills any of the following, mutually equivalent conditions: (A) Its spectral form
reads

∑
i,j aij P̂1i ⊗ �̂2j , where appear the (orthogonal) projectors onto the Hilbert

spaces of the two systems; (B) there exist the two orthonormal bases in the
state spaces of the systems, {|i〉1}, and {|α〉2} that diagonalize the observable:
1〈i|Â12|j 〉1 = 0,∀i �= j , and 2〈α|Â12|β〉2 = 0,∀α �= β; (C) every pair of the ob-
servable of the system 1 in Eq. (2) mutually commute, and analogously for the
system 2.
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A constructive proof of existence of the general form Eq. (2) of a bipartite system’s
observable is given in (Dugić, 1997). Here, we want to emphasize: the form Eq. (2)
is a general form for the bipartite-system’s observables, such as the interaction
Hamiltonian; i.e. an observable is either of a non-separable, or of the separable
kind–the later requiring fulfillment of any of the points (A)–(C) of Definition 4.1.

Therefore, operationally, investigating separability of the interaction Hamil-
tonian gives rise to both (Dugić, 1996, 1997): (i) to the superselection rules defined
by the projectors {P̂1i} (when the system 1 is considered as the open system), and
(ii) to a definition of the pointer observable and therefore of the possible pointer
basis (or of the preferred set of states) of the open system–e.g. the system 1 in our
notation). Having in mind that the observables, e.g. B̂1s, are the functions of the
degrees of freedom of the system 1, the task of investigating decoherence actually
assumes the initially well-defined (sub)systems.

So, we introduce the following operational tool for addressing the problem at
issue: the condition of separability appears as a criterion for defining the “dividing
line” between the subsystems of a composite system.

5. QUANTUM RELATIVITY OF “SYSTEM”

Usefulness of separability in the foundations of the decoherence theory bears
some subtlety yet. The example of the hydrogen atom is paradigmatic in the fol-
lowing sense. The composite system “hydrogen atom (HA)” is originally defined
by the Hamiltonian:

Ĥ = T̂e ⊗ Îp + Îe ⊗ T̂p + V̂Coul, (3)

where the Coulomb interaction, V̂Coul , couples the positions of the electron (sub-
script e) and of the proton (subscript p), bearing obvious notation. Having in
mind the definition of separability (Section 4), it is straightforward to prove non-
separability of Ĥ yet separability of the Coulomb interaction.

However, the proper canonical transformations of the degrees of freedom
give another, separable form of Ĥ ; even more, each single term is (apparently) of
the separable kind:

Ĥ = T̂CM ⊗ ÎR + ÎCM ⊗ T̂R + ÎCM ⊗ VCoul(r̂R), (4)

where CM stands for the “center of mass” and R for the “relative particle” system;
rR ≡ |�re − �rp|.

In the context of our considerations, these well-known transformations give
rise to the following observation. The composite system HA is decomposable into
the pair of the quantum particles (e, p) (cf. Section 6 yet). On the other side, the
form Eq. (4) of the Hamiltonian refers to the new, also well known, division of HA:
the system now reads “Center of mass + relative particle” (CM + R); certainly,
e + p = C = CM + R. Due to the small mass-ratio–me/mp 	 1–it is allowed to
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“identify” CM with p and R with e. Nevertheless, in general, this identification is
not physically reasonable, as we show in the sequel. From this example, we learn:
the choice of the degrees of freedom may redefine the Hamiltonian separability,
thus (cf. Section 4) directly referring to the issue of putting the dividing line
between the (sub)systems.

Let us first briefly consider the case of totally nonseparable Hamiltonian. That
is, we assume that a given Hamiltonian can not be (re)written in a separable form
by the use of any (linear) canonical transformations. As to the told in Sections 3
and 4, then one can not define the dividing line between the “subsystems” of
the composite system defined by the Hamiltonian considered. Then, it seems we
are forced to consider the system undivisable, thus resembling the concept of
elementarity of the quantum particles. Physically, a definition of the subsystems
in this case is artificial, and the measurements of the “subsystems’ observables”
is nothing but the measurements of the observables of the composite system, not
yet interpretable in terms of the observables of the well-defined subsystems.

As a counterexample, let us consider the following possibility. A Hamiltonian
is separable relative to a set of the “degrees of freedom” (and their conjugate
momenta), (x̂Ai, p̂Aj ; ξ̂Bm, π̂Bn), thus defining a division of the composite system
as C = A + B; by definition, [x̂Ai, p̂Aj ] = ıhδij (and analogously for B), while
[x̂Ai, ξ̂Bm] = 0 and [x̂Ai, π̂Bn] = 0 (and analogously for p̂As). But, suppose that
the same Hamiltonian can be rewritten in a separable form relative to another
(analogous) set of the “degrees of freedom,” (X̂Dp, P̂Dq ; ζ̂Eα, �̂Eβ), thus giving
rise to another possible division of the composite system, C = D + E . By the
assumption: the two sets of the observables are mutually related by the linear
canonical transformations

ζ̂Eα = fα(x̂Ai, p̂Aj ; ξ̂Bm, π̂Bn), �̂Eβ = gβ(x̂Ai, p̂Aj ; ξ̂Bm, π̂Bn), (5)

and analogously for the subsystem D, while assuming the inverse is also defined.
Now, the supposed separable forms of the same interaction Hamiltonian read:

Ĥint =
∑

m

Cm(x̂Aj , p̂Aj ) ⊗ Dm(ξ̂Bl, π̂Bl) (6)

and

Ĥint =
∑

n

En(X̂Dp, P̂Dp) ⊗ Fn(ζ̂Eq, �̂Eq) (7)

Needless to say, the measurements of e.g. x̂Ai , or ζ̂Dp, may be interpreted as
the measurements of the observables of the composite system. Yet, the supposed
separabilities of the Hamiltonian allow interpretation in terms of the subsystems,
again bearing some subtlety.

In general, the measurements of the observables ofA and/or ofB partly reveal,
yet quantum mechanically undetermined values of the observables of both D and
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E–due to Eq. (5), one may obtain e.g. [x̂Ai , ζ̂Dα] �= 0. As a consequence: the inverse
of Eq. (5) can not be used for determining the definite values of the observables
of D and E–in contradistinction with the macroscopic experience. On the other
side, only the measurements of A and B (of D and E) do not mutually interfere,
referring to the mutually compatible observables. Therefore, the measurements
of the observables of the “subsystems” belonging to the different divisions are
not mutually independent, while the measurements referring to the observables
of the subsystems belonging to the same division of the composite system are
independent. Needless to say, the later is in agreement with the standard, general
procedure we have learnt in the “classical domain.” As a consequence, the two pos-
sible divisions may refer to the two, mutually complementary, possible entangle-
ments in the system C:

∑
i ci |ψi〉A ⊗ |χi〉B , and

∑
j dj |�j 〉D ⊗ |φj 〉E (compare to

(Barnum et al., 2003; Zanardi et al., 2004))–which in the position-representation
gives rise to the equality,

∑
i ciψi(xAp)χi(ξBq) = ∑

j dj�j (XDm)φj (ζEn).
As long as the composite system may be considered to be isolated, the two

different divisions as described above seem mutually equivalent for an independent
observer. This, however, need not be the case for an open composite system, as
discussed in (Dugić et al., 2002).

It is probably obvious: a definition of e.g. subsystem A makes sense if and
only if the subsystem B is simultaneously defined. This is both a mathematical
consequence of the canonical transformations as well as physically a reasonable
notion.

Therefore, the concept of elementarity as well as of a subsystem are relative;
as to the later, due to the fact that the real systems are usually open, the relativity of
“subsystem” actually means relativity of the basic physical concept of “system.”

6. DISCUSSION

The problem of “what is system” naturally stems from the foundations of the
macroscopic context of the decoherence theory (Section 3). Actually, the states of a
macroscopic (open) system are expected to bear robustness against the influence of
the environment–cf. Eq. (1)–that should provide both, a well-defined macroscopic
system–that we here discuss–as well as a classical-like dynamics of the system–
that is established by the decoherence theory. On the other side, it seems that,
nowadays, the physicists are ready to accept the “undivised universe” on the truly
microscopic, and partly on the “mesoscopic” scale. To this end, robustness of
states does not fit with the supposed quantum holism on the micro/meso- scale.
Nevertheless, the issue of “what is system” is also of interest on these scales from
both fundamental physical as well as the information-theoretic point of view (as
to the later cf., e.g., (Barnum et al., 2003; Zanardi et al., 2004)). Therefore, our
conclusions mainly refer to the macroscopic context of the decoherence theory;
investigating their extension towards the fully quantum mechanical scales remains
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partly an open task of our analysis. To this end, the above distinguished use of the
condition of separability may be employed as a (plausible) working hypothesis.

Following the fundamentals of the decoherence theory, we have argued that
the condition of separability of the interaction Hamiltonian appears as a criterion
for making the “dividing line” between the subsystems of a composite system.
As we here emphasize, this approach gives automatically rise to the possibility
of defining the subsystems, through a definition of the degrees of freedom (and
their conjugate momenta) that is based on the condition of separability of the
interaction Hamiltonian. We have also seen that the separability is consistent with
our macroscopic experience: e.g. the measurements on B (A) may be performed
independently on the measurements on the subsystem A (B); as a benefit of
our considerations, the subsystem B (A) may be defined only simultaneously
with the subsystem A (B). The different divisions of the composite system may
bear quantum mechanical complementarity, being mutually exclusive divisions
of a composite system. This way, the problem of “what is system” seems to be
sharpened, and particularly reduced to the following problem: “as to what extent,
one may ascribe the physical reality to the different divisions of a composite
system?” Needless to say, much remains yet to be done in this respect, and the
work in this regard is in progress.

In our brief discussion of the hydrogen atom (HA) in Section 4, we have
left a few important notions out. Here, we want to emphasize consistency of the
analysis given in Section 4 with the foundations of both, HA theory as well as of
the decoherence theory.

Actually, one may wonder if the Coulomb interaction might provide de-
coherence of the electron states; in other words, one may wonder: bearing the
foundations of the decoherence theory (cf. Appendix A) in mind, one may wonder
why the electron states do not decohere. Actually, the negative energies of the
electron in HA suggest that the Coulomb interaction dominates in the system.
Then, according to the decoherence theory (Section 3), one might expect that
the electron states might decohere. In answer to this question, we emphasize: the
proton is much too small a system in order to play the role of the environment for
the electron. In effect, the proton appears as a source of the external field for the
electron–the Coulomb field–not as a dynamical system such as the environment
in the decoherence theory. For this reason, the electron remains an isolated system
that is subject to the Schrodinger equation, rather than to the decoherence pro-
cess. The analogous question applies to the composite system CM + R. Actually,
naively, one might expect that the separable (total) Hamiltonian Eq. (4) should
provide the occurrence of decoherence of states of the system R. Again, the answer
is very much the same: the system CM is much too small and effectively plays
the role of the source of the external field for the system R. Now, we obtain the
fully consistent picture: if the proton (or CM) were large enough, the electron (or
the system R) states might have decohered. Bearing this in mind, it is clear: we
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use the HA model as a paradigm for re-defining separability of the (interaction)
Hamiltonian, without claiming the occurrence of decoherence in HA. Finally, the
analysis of HA gives rise to both, consistency of our considerations as well as their
applicability to the realistic models.

Once made, a division of a composite system C may be extended (further
“coarse graining” of C) in accordance with the above criteria–e.g. A = A1 +
A2 + . . . . This might also be a basis for certain progress in respect to another
fundamental problem of “what is object” (Omnes, 1994). Actually, a collection of
the degrees of freedom–defined e.g. according to the method here proposed–does
not per se define the “object”–that is understood (Omnes, 1994) as a spatial form
(a shape) of the system. The concept of “object” comes from the macroscopic
sector yet being of significant interest even for certain mesoscopic systems, such
as the macromolecules (Raković et al., 2004) (and the references therein).

Finally, our discussion and conclusions are applicable virtually to any com-
plex quantum system. However, its relevance for the realistic systems remains yet
to be investigated in the purely quantum-mechanical (“microscopic”) as well as
in the mesoscopic context. To this end, it is interesting to compare our approach
and conclusions with the approach of Zanardi et al. (2004) and Barnum et al.
(2003). A common element of Zanardi et al. (2004) and our considerations is
the notion on the importance of interaction in the composite system in defining
the subsystems. While this is a conclusion in (Zanardi et al., 2004), we still use
this notion (stemming from the decoherence theory) in developing the general
models of our analysis. The approach of Zanardi et al. (2004) is based on certain
axioms referring to the “experimentally accessible observables,” which is yet an
open issue of our approach. Our approach is characterized by the pointing out
separability as an operational tool in defining the subsystems. On the other side,
rejecting the “reference to a preferred subsystem decomposition” of a composite
system, (Barnum et al., 2003) seem essentially to point to the relativity of the
concept of “subsystem”–in analogy with our conclusion. However, being an op-
erational analysis of entanglement, their paper does not directly tackle the issue
of “what is system.” Nevertheless, we believe, that the conclusions of (Barnum
et al., 2003; Zanardi et al., 2004) are consistent with our conclusions, which still
follow from the foundations of the “environment-induced superselection rules”
(or decoherence) theory.

7. CONCLUSION

Decoherence theory is well-suited for addressing the fundamental problem
of “what is system.” Here, we employ the foundatins of the “environment-induced
superselection rules” theory. Actually, we employ the condition of separability of
the interaction Hamiltonian as a criterion for putting the “dividing line” between
the subsystems of a composite system. On this basis, we point out quantum
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relativity of the very basic physical concept of “system,” thus challenging our
classical intuition (e.g. by complementarity of the possible different divisions of
a composite system) and posing certain questions that might be of significant
interest for the information-theoretic issues (such as e.g. the operational use of
quantum entanglement in a bipartite quantum system).

The authors thank the Ministry of Science and Environmental Protection,
Serbia, for financial support.

APPENDIX A

A composite system is defined by its Hamiltonian:

Ĥ = Ĥ1◦ + Ĥ2◦ + Ĥint . (A.1)

If the interaction term Ĥint can not be reduced to external field for the open
system 1, then neither subsystem can be described by the Schrodinger evolution.

Bearing in mind Eqs. (1) and (2), it is easy to prove that separability of Ĥint

represents an (effective) necessary condition for the occurrence of decoherence
(Dugić, 1997).

Actually, when applied to Eq. (1), the expression Eq. (2) implies diagonaliz-
ability:

1〈m|Ĥint |n〉1 = 0, m �= n (A.2)

where {|m〉1} is a common eigenbasis of the observables of the system 1, {B̂1i}, in
Eq. (2).

On the other side, with restriction to the almost-periodic-functions formalism
(cf. Zurek (1982) and references therein), non-diagonalizability of Ĥint in a basis
of the system 2, {|α〉2}, does not give rise to the occurrence of decoherence.
Needless to say, a (as yet a hypothetical) more general formalism might challenge
our conclusion. Bearing in mind that the exceptions are not known yet (Dugić,
1998), we stem the following rule: diagonalizability of Ĥint in a basis {|α〉2}
represents an effective necessary condition for the occurrence of decoherence.

Altogether, the two diagonalizabilities stem (cf. Definition 4.1) the interaction
Hamiltonian separability as the effective necessary condition for the occurrence
of decoherence.
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